New Application of CSIA in Organic Contaminant Studies in Groundwater

Ramon Aravena

Department of Earth and Environmental Sciences, University of Waterloo

Talk Outline

- Introduction to environmental isotopes
- Application of CSIA in unsaturated studies
 implications for vapor intrusion studies
- Application of CSIA in studies of low permeability sediments
 - implications for long term persistence of contaminants plumes on sites where the source has been remediated

Processes that Control Contaminant Concentration in Groundwater

Natural Abundance of Stable Isotopes

Isotope Ratio		% natural Reference abundance	
² H	² H/ ¹ H	0.015	VSMOW
³ He	³ He/ ⁴ He	0.000138	Atmospheric He
¹³ C	¹³ C/ ¹² C	1.11	VPDB
¹⁵ N	¹⁵ N/ ¹⁴ N	0.366	AIR N ₂
¹⁸ O	¹⁸ O/ ¹⁶ O	0.204	VSMOW
³⁴ S	³⁴ S/ ³² S	4.21	CDT
³⁷ CI	³⁷ CI/ ³⁵ CI	24.23	SMOC

Reporting isotope ratios The $\delta\text{-notation}$

$$\delta^{13} \mathbf{C} = \left(\frac{{}^{13} \mathbf{C} / {}^{12} \mathbf{C}_{\text{sample}}}{{}^{13} \mathbf{C} / {}^{12} \mathbf{C}_{\text{standard}}} - 1 \right) \cdot 1000 \quad \text{(\% VPDB)}$$

Example: Average carbon isotope ratio of natural compounds

	¹³ C/ ¹² C	$\delta^{13}\mathbf{C}$	
Carbonates	0.01124	0	t
CO ₂ of atmosphere	0.01116	-7	more
Biomass	0.01096	-25	¹³ C
Biogenic methane	0.01045	-70	

Main Organic Contaminants found in Groundwater

Isotope: ¹³C/¹²C, D/H, ³⁷CI/³⁵CI

Determination of compound-specific isotope ratios by GC-IRMS Example: Carbon isotopes ¹³C/¹²C

Chlorinated Solvents from Different Manufacturers

Use of isotopes to evaluate biodegradation of organic contaminants

- Laboratory studies
 - Isotope pattern of substrate and product during biodegradation
 - Quantification of magnitude of isotope fractionation
 - Isotope fractionation during biodegradation of BTEX, MTBE and other petroleum hydrocarbons
 - Isotope fractionation during biodegradation of chlorinated hydrocarbons
- Field studies
 - Evaluation of biodegradation at sites contaminated with petroleum hydrocarbons and chlorinated hydrocarbons
- Approaches to evaluate isotope data

Isotope fractionation: Occurrence and magnitude

TCE

cis-1,2-DCE

 $\frac{\delta - \delta_{o} \cong 10^{3} (\alpha - 1) \cdot \ln f}{\text{or } \delta - \delta_{o} \cong \varepsilon \cdot \ln f}$

Carbon isotope fractionation during reductive dechlorination of VC to ethene

Bonds to light isotopes are weaker and thus break faster -> Difference in reaction rates = Kinetic isotope effect (KIE)

Ref: Hunkeler, D., Aravena, R., Cox. E., 2002. Environmental Science and Technology, 36, 3378-3384.

Quantification of isotope fractionation

Rayleigh equation: simplified and in ‰-notation

$$\delta^{13}C = \delta^{13}C_0 + \varepsilon \cdot \ln \frac{C}{C_0}$$

δ¹³C δ¹³C₀ ε

isotope ratio of compound (‰)
initial isotope ratio of compound (‰)
isotopic enrichment factor (‰)
(measure of strength of isotope
fractionation)

Isotope evolution of product

Ref: Hunkeler, D., Aravena, R., Cox. E., 2002. Environmental Science and Technology, 36, 3378-3384.

Expected isotope evolution

Expected isotope evolution

Basic premises in saturated zone applications

- Physical processes (dissolution, advective-dispersive transport, sorption) do not significantly alter stable isotope ratios
- Reactive processes are associated with detectable and reproducible isotope fractionation
- -> Application for source fingerprinting and tracking biodegradation

Do these conclusions also apply in unsaturated zone studies when considering vapor migration?

CSIA in Unsaturated Zone Studies

Interaction biodegradation and diffusion

Column experiment

- Experimental set up
 - Alluvial sand
 - Source of 10 VOCs

Carbon isotope ratios in column

Isotope evolution at source

Field site location

Værlose unsaturated zone experiment

- Carried out by Danish Technical University, GRACOS project
- Artificial gasoline mixture placed at 1.2 m depth below surface
 - BTEX, TMB
 - Alkanes, Cycloalkanes
 - CFC113

Carbon isotope ratio of Hexane

Distance m

Maximal shift in δ^{13} C and isotopic enrichment factors ϵ

	$\Delta \delta^{13} \mathbf{C}$	$\Delta \delta^{13} \mathbf{C}$	3
	max neg. (‰)	max pos. (‰)	(‰)
Hexane	-5.1	9.4	-2.2 ± 0.63 (12)
Octane	-2.8	5.7	-0.9 ± 0.13 (10)
3-Methylpentane	-4.1	10.6	-1.5 \pm 0.08 (2)
Methylcyclopentane	-5.7	8.0	-1.1 \pm 0.04 (3)
Methylcyclohexane	-3.2	4.5	-1.0 ± 0.28 (3)
Benzene	-2.6	7.7	-3.1 ± 0.63 (6)
Toluene	-3.2	5.1	-0.7 ± 0.27 (6)
m-Xylene	-2.2	1.4	-0.8 ± 0.12 (3)
1,2,4-TMB	-2.1	0.1	

Modeling scenarios

• Degradation rate estimated from concentration data

- Scenarios
 - 1. Only biodegradation fractionates
 - 2. Only diffusion fractionates
 - 3. Biodegradation and diffusion fractionate

Scenario 1 Only biodegradation fractionates

Distance m

Distance m

Comparison Model/Measurements Biodegradation and diffusion fractionate

Existing monitoring wells at the Magen study area sampled in the course of this study; (
) wells that penetrate into the UZ; (
) wells that penetrate into both the saturated and unsaturated zones.

Fig. 5 Four aquifer impact areas based on the concentration of the Cl-VOC component that was greatest in relation to its Israel drinking water standard (IDWS) for the period 1999 to 2001: area I (*red*) \geq 100% IDWS; area II (*orange*) 50–<100% of IDWS; area III (*dark yellow*): 10–<50% of IDWS; area IV (*light yellow*): 0–<10% of IDWS. Potential sources of Cl-VOCs are shown as *filled black circles*

Hunkeler et al., 2011, ES&T

Passive multilevel passive sampler system Diffusion Sampler

Concentration, stable carbon isotope ratio, and stable chlorine isotope ratio of TCE in monitoring wells M5A and M5 (a-c), and M15S (d-f). The concentrations in the unsaturated zone correspond to equivalent aqueous phase concentrations. The horizontal line indicates the location of the water table

Conclusions unsaturated studies

- Under steady state diffusion (and in absence of biodegradation), isotope ratios are expected to be constant in space
 -> Linking vapor plumes to sources
- Isotope enrichment due to biodegradation is partly counterbalanced by diffusion isotope effect
 - -> Isotope ratios almost « conserved » for some isotopes (especially C) while significant trend expected for others (especially H)
- If significant mass has been removed from source, source becomes enriched or depleted in heavy isotope, depending on substance and isotope
 - -> Tool to track degree of source removal in unsaturated zone

CSIA in a vapor intrusion process

Sampling and analysis of vapor samples is challenging because of the low concentration levels (0.001 to 0.01 μ g/L range)

Site and Downgradient Area

Downgradient re-injection to avoid stagnation zones and enhance plume flushing

Property Boundary

Multilevel VOC Profile: WR Transect

Hydraulic capture system started 8/2002

Aquitard Protection to Aquifers

This Talk Will Present

Evidence for contaminant degradation in silty/clayey aquitards

Implications for aquifer cleanup and protection

Aquitard Protection to Aquifers

Degradation Enhances Aquifer Protection

Thickness of Aquitard Biodegradation Zone

May be limited to a few cm into clay

Sleep (2007); Broholm et al. (2006); Takeuchi et al. (2011)

Observed the development of microbial communities capable of degrading contaminant mass stored

• Van Stempvoort et al (2009); Takeuchi et al. (2011)

Contaminant Mass "Trapped" in Aquitard

SZ Isolation + Aquifer Remediation

Case Study – South Carolina Site

Pointer 34"11'25.61" N 79"34'21.89" W elev 27 m

ye all 348 m

Degradation Pathways

From Wiedemeier et al., 1999

Released contaminants

Observed breakdown products

From Lorah & Olsen, 1999

Case Study – South Carolina Site

Monitoring Network

Source Isolation – December 2007

Lithology

Direct Push Coring – Enviro-Core Method

~ 100% Recovery

Sediment Core – Subsampling

Guilbeault, 1999

Sediment Core – Subsampling

Methanol preservation

Concentration

Results

Aquitard hydraulic properties

Sediment core – VOCs, CSIA, and microorganisms

Groundwater- Redox, VOCs, and CSIA

Hydraulic Head Profiles

Hydraulic Head Profiles

Lack of connectivity between upper and lower aquifers

Low vertical hydraulic conductivity and apparent lack of fractures

Isotope Signatures of Parents and Potential Daughters Compounds at the Study Site

Compound	δ ¹³ C (‰)	References
1,1,2,2 - PCA	-33.04	(1, 2)
PCE	-23.19 to -33.84	(3, 4)
TCE	-24.45 to -31.90	(3-5)
CT	-38.6	(6)
CF	-45.3	(6)
DCM	~-50.0	(7)

[VOC] + CSIA + Microbiology

C10

[VOC] + CSIA + Microbiology

C9

Sediment Core Samples – Comparison

Aquitard vs. Aquifer

What is going on in the aquifer?

Groundwater – Dissolved H₂

Approx. Elevation	CMT-15 [nM]	CMT-5 [nM]	CMT-8 [nM]	CMT-10 [nM]	
25.5	<0.600	4.5	7.2	1.2	
24.5	0.640	5.2	-	19	
24.0	-	17	1100	-	
23.5	-	17000	3400	-	

Groundwater – Redox Conditions

Locatior Po	Point	Elevation	CI	NO ₃ ⁻	Fe(II)	SO4 ²⁻	Mg	тос	Ethane	Ethene	H ₂	CH₄
	1 onit	masl	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	nМ	μg/L
CMT-15	1	25.50	11	60	<1	5.2	0.051	<5	0.033	<0.01	<0.6	0.084
CMT-15	2	24.50	11	46	<1	8.6	0.046	<5	<0.01	0.016	0.64	0.32
CMT-5A	1	25.24	49	<0.5	14	1.7	0.083	<5	27	3.9	4.5	2800
CMT-5A	2	24.40	25	<0.5	1.9	<1	0.075	<5	23	3.9	5.2	960
CMT-5B	3	23.83	52	<0.5	1.8	1.2	0.35	<5	37	7	17	1600
CMT-5A	3	23.51	72	<0.5	4.8	2.5	0.46	5.9	37	6.3	17000	1000
CMT-8B	1	25.51	11	<0.5	5.4	1.7	0.016	<5	51	6.8	7.2	520
CMT-8A	1	24.93	11	<0.5	7.7	1.6	0.029	<5	32	4.7	12000	380
CMT-8A	2	24.30	14	<0.5	1.1	<1	0.074	<5	13	2.5	260	62
CMT-8B	3	23.99	34	1.2	1.4	1.2	0.19	<5	12	2.3	1100	42
CMT-8A	3	23.69	130	<0.5	<1	2.9	0.79	<5	6.2	3	3400	16
CMT-10	1	25.37	5.7	<0.5	1.4	1.9	0.01	<5	7	1.3	1.2	71
CMT-10	2	24.53	29	<0.5	2.2	<1	0.074	<5	2.8	0.75	19	8.6
CMT-10	3	23.79	49	<0.5	1.2	1.7	0.16	<5	0.47	0.28	?	5.1

[VOC] + CSIA, Groundwater- Chlorinated ethanes

[VOC] + CSIA, Groundwater- Chlorinated methane

Application of the Waterloo Membrane Sampler (WMS) for Isotope Ratio Analysis in Vapor Samples

by O. Goli, T. Górecki, R. Aravena, H.T. Mugammar and M. Marchesi

University Consortium for Field-Focused Groundwater Contamination Research Program for Annual Progress Meeting: June 12-14, 2012 The Arboretum, University of Guelph

Waterloo membrane sampler (WMS)

WMS sampler

- C₀ analyte concentration in the studied medium
- k calibration constant (time/volume)
- **M** collected mass of the analyte
 - t time of exposure

WMS and CSIA

- In order to introduce the required amount of the contaminant necessary in the CSIA analysis, the WMS was combined with thermal desorption (TD)
- WMS was employed under controlled conditions for measurements of carbon isotope composition (δ¹³C) of analytes of interest that are contained in a standard gas mixture
Experimental set-up

TD-GC-IRMS

Preliminary experiments

- Target contaminants investigated: benzene, hexane and TCE
- Exposure times: 3, 6, 12 and 24 hours
- Concentration of the analytes in the exposure chamber was adjusted for various exposure times (for each exposure time the target amount collected by the passive sampler was the same)

Results

	Passive sampling	Active sampling	Passive sampling	Active sampling	Passive sampling	Active sampling
Time of exposure	HEXANE	HEXANE	BENZENE	BENZENE	TCE	TCE
(h)	δ ¹³ C					
3	-28.8	-28.0	-31.1	-30.4	-32.5	-31.3
6	-29.1	-27.6	-29.0	-27.6	-32.1	-30.8
12	-29.3	-27.7	-29.0	-27.8	-32.8	-31.5
24	-29.5	-27.7	-29.9	-28.2	-32.4	-31.3
Average	-29.2	-27.8	-29.8	-28.5	-32.4	-31.2
Standard deviation	0.3	0.2	0.5	0.3	0.3	0.3
Difference between passive and active sampling	-1.4		-1.3		-1.2	

HEXANE

All the values obtained for passive and active sampling are in the range of the error of 0.5 ‰

The difference in between the average values for passive and active sampling is around 1.4 ‰

BENZENE

Excluding the dataset for 3h exposure again the values obtained for passive and active sampling are in the range of the error of 0.5 ‰

The difference in between the average values for passive and active sampling is around 1.5 ‰

TCE

As for benzene and hexane, the TCE values obtained for passive and active sampling are in the range of the error of 0.5 ‰

The difference in between the average values for passive and active sampling is around 1.2 ‰

Conclusions

- The results are consistent and the standard deviations for all the compounds are below the common error accepted (0.5 %)
- The difference between the values from passive and active sampling seems to be practically constant in the timeframe studied
- The results indicate that WMS could be a useful tool for fingerprinting applications based on CSIA

Future work

- Perform the same experiments for longer exposure times
- Determine the applicability of the method to real field projects